MARK SCHEME for the May/June 2013 series

9691 COMPUTING

9691/12
Paper 1 (Written Paper), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2013	9691	12

1 (a) buffer - any one from:
temporary storage area used to hold data before being transferred allows for difference in working speeds (of processors and peripheral devices)
interrupt - any one from:
signal sent to the processor/CPU (which causes break in the execution of current routine)
(b) (i) Any three points from:
data is transferred from (primary) memory to printer buffer when the buffer is full, the processor can carry on with other tasks printer buffer is emptied to printer when printer buffer is empty, printer sends an interrupt to the processor requesting more data to be sent according to priorities
(ii) Any two points from:
first (block) of data sent to the first buffer whilst this data is being printed by the printer next block of data is sent to the second buffer when the first buffer is empty data from the second buffer is then printed meanwhile more data is then sent to the first buffer this continues until all data has been processed by the printer

Page 3	Mark Scheme	Syllabus	Paper
	GCE ASIA LEVEL - May/June 2013	9691	12

2 (a) 1 mark for naming type of media + 1 mark for description/examples

magnetic media

surface coated with magnetic material
magnetic properties altered to represent 1 s and 0 s
used by hard disks, magnetic tapes, floppy disks

optical media

surface coated with light sensitive material
read/written by lasers
CDs use one spiral track
used by DVD-RAM, CD-R, CDROM, CDRW, blu-ray disc

solid state media

uses millions of tiny transistors
where movement of electrons controlled within a microchip has no moving parts used by memory sticks, MP3 players, cameras/mobile phones
(b) (i) Any two DIFFERENT points from:

RAM
contents can be altered/written to holds data/program currently in use volatile memory/temporary memory/contents lost when switched off usually has a greater memory capacity than ROM

ROM
contents can be read only/can't be altered
holds bootstrap/BIOS/system data
non-volatile memory/permanent memory/retains contents when switched off
(ii) Any two points from:
needs RAM to store instructions given by the user needs RAM to temporarily store program controlling car needs RAM to store current radio frequencies to control car
needs ROM to store the factory settings/basic instructions needs ROM to store radio frequencies (etc.) understood by remote controller needs ROM to store start up routines when car switched on

Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2013	9691	12

3 (a) (i) Any one point from:
transmission is sent in one direction only
along a single data line
Reject single CABLE
(ii) Any one point from:
transmission can be in both directions at same time
along several data lines/one data line per bit
(b) (i)

letter	bytes adjusted for even parity								
\mathbf{C}	$\mathbf{1}$	1	0	0	0	0	1	1	
\mathbf{O}	$\mathbf{1}$	1	0	0	1	1	1	1	
\mathbf{M}	$\mathbf{0}$	1	0	0	1	1	0	1	
\mathbf{P}	$\mathbf{0}$	1	0	1	0	0	0	0	
\mathbf{U}	$\mathbf{0}$	1	0	1	0	1	0	1	
\mathbf{T}	$\mathbf{1}$	1	0	1	1	0	0	0	
\mathbf{I}	$\mathbf{1}$	1	0	0	1	0	0	1	
\mathbf{N}	$\mathbf{0}$	1	0	0	1	1	1	0	
\mathbf{G}	$\mathbf{0}$	1	0	0	0	1	1	1	

(-1 mark for each error in the first column)
(ii) 01011100
(iii) Any three points from:
character " P " flagged as having odd parity (row 4 in diagram)
parity byte sent with data i.e. 01011100
column 5 also has odd parity (or equivalent)
faulty bit must be in row 4 and column 5
idea of auto correction of fault (in row 4, column 5)
(Check if diagram has been annotated to show faulty bit)

Page 5 Mark Scheme	Syllabus	Paper	
	GCE AS/A LEVEL - May/June 2013	9691	12

4 (a) 1 mark for name of device + 1 mark for reason

scanner

to produce an electronic/digital map version of the passport photograph (scans) into computer readable format
digital camera/video camera
to produce an electronic image of the passenger's face produces a similar format to the scanned image
(b) (i) 1 mark for each point
use of a pressure sensor sends data back to computer system need for conversion to digital form (ADC) computer calculates weight based on sensor data this calculated value is compared / (or equivalent) to stored values sends weight back to a small screen at check-in if weight exceeds airline limit, operator warned at check-in by, e.g., a flashing screen or beeping sound / if weight below limit luggage accepted
(ii) 1 mark per point
(labels printed in form of) a barcode
barcode is unique
use of barcode reader/scanner
barcode is used as a key field in passenger record
barcode read at each stage \qquad
... and this data is stored in passenger record thus allowing tracking/whereabouts of luggage at any stage

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2013	9691	12

5 (a) 1 mark for naming type of diagram +2 marks for description/examples
data flow diagram (DFD)
graphical representation of flow of data through the system
shows what data is input and output from the system
shows where data comes from and goes to and where it is stored contains process, flow, store and terminators

systems flow chart/diagram

way of displaying how decisions are made to control events shows devices (e.g. disk drives)
shows media use for input/output and storage (e.g. paper output) shows what files are used in the system

Program flowchart/Jackson structured diagram

shows method of solution
shows data inputs and outputs
shows modularisation
If NO valid diagram stated then cannot get features for that part of the answer REJECT flowchart alone (accept examples/diagrams as part of explanation reflecting description above)

Page 7 Mark Scheme	Syllabus	Paper	
	GCE ASIA LEVEL - May/June 2013	9691	12

(b) 1 mark for each item +1 mark for reason

purpose of the system

this allows another programmer to know what the aim of the software is

program listing/coding

if an error occurs in the original program this allows another programmer to alter the coding to cure the fault

flowchart/algorithm

these will show the logical steps in the program or system so another programmer can follow the logic

input/output formats

allows another programmer to test the system to see if it produces expected results

hardware and software requirements

useful if a system needs to be upgraded so another analyst can decide exactly what hardware or software would need to be changed/ ensure new hardware is compatible

list of variables/data dictionary

this allows another programmer to understand what the variables represent so they can understand the coding

file structures

this is important so that another programmer knows if they are fixed length etc. and how the data is arranged in the file

test plans/sample runs/test data

this is important so that another programmer can see how the original software performed and to see how it was tested

validation rules

knowledge of these rules will let a programmer know what error trapping exists within the software
so that new data follows the same rules

meaning of error messages

this helps another programmer understand what is going wrong with the software

Page 8	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2013	9691	12

6 (a) (i) 1 mark for each correct output device +1 mark for each reason

production

dot matrix printer
factory environment could be dirty/dusty/damp need to produce stickers from continuous stationery
design office
large computer screen/monitor
need to be able to see new designs very clearly
if screens are CRT it is possible to use light pens

(graph) plotters

to produce "blue-prints" which can be used to build prototypes often necessary to produce full size drawings of new product

3D printers

these allow production of solid prototypes/models that work reduces cost of tooling up to make a real working example

marketing

laser printers
producing large numbers of brochures/catalogues/flyers
quiet operation in office environment
high speed operation when producing large print runs

screens

to show dialogue/script when answering customer queries

headphones

to hear customer queries

finance
 dot matrix/impact printer

pay slips produced on continuous stationery
"hidden information" in ready sealed envelopes
laser/inkjet printer
produces payslip for later sealing
none secure
NE to produce hard copy of a wage slip
(b) Any three points from:
large coloured graphics showing process
green colour to show ON and red colour to show OFF
flashing/highlighted colours used to indicate error/attention required
layout needs to allow links to other screens showing other part of process
layout should be clear and easy to use
ability to "click on"/choose graphic to show status of the item
use of input devices such as touch screens, trackerballs and keyboards/keypads to allow selection etc.
use of output devices such as large screens, printers and speakers/ beepers to produce plant data and warn of problems

Page 9	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2013	9691	12

7 (a) (i) Any two points from:
(use of a 2-dimensional array) Grid [1:3, 1:3]
use 1 value for " X " and 0 value for " O " or characters " X " and " O " each square in game corresponds to position in array
... e.g. 1 value in Grid [1, 1], 0 value in Grid [2,1] and so on each time a square is "filled in" the position is identified and appropriate value stored in correct position in array Grid
(ii) integer/char
(iii) 1/null/space
(b) Any four points from:
each array position is scanned
each row is checked e.g. first row: Grid [1, 1], Grid [2, 1] then Grid [3, 1] and so on computer checks to see if all three values in the row are the same ...
... if they are all 1 s then " X " has won; if all 0 s then " O " has won *
each column is checked e.g. first column: Grid [1, 1], Grid [1, 2] then Grid [1, 3] and so on
computer checks to see if all three values in the column are the same
... if they are all 1 s then " X " has won; if all 0 s then " O " has won *
each diagonal is checked e.g. Grid [1, 1], Grid [2, 2] then Grid [3,3] OR Grid [3, 1],
Grid [2, 2] then Grid [1, 3]
computer checks to see if all three values in diagonal are the same ...
... if they are all 1 s then " X " has won; if all 0 s then " O " has won *
this scan is carried out each time a square has been filled in

* this answer can only be accepted once

If an algorithmic approach has been applied mark along the following lines:
initialise flag before checking array
concept of looping for a row
concept of looping for a column
recognising position in an array
check symbol in adjacent cells is the same
flag or recognition of change in content
(c) 1 mark for device +1 mark for reason

touch screen

user only has to touch a square on screen to make choice computer knows player is " X " and puts an " X " where screen touched

mouse/trackerball/trackpad

user moves cursor/arrow and points to chosen square
"click" to confirm and " X " is placed in chosen square

keyboard

move cursor/arrow by using $\uparrow \downarrow \leftarrow \rightarrow$ keys press <ENTER> key when chosen square found

Page 10	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2013	9691	12

8 (a) record key is used the key value is subjected to arithmetic algorithm to give/calculate the location/address of the record
(b) 1 mark for chosen method +1 mark for description
use of overflow/bucket area used
any record that is subject to a collision is placed, serially, in overflow area set flag when overflow / bucket is in use
use of linked lists
original location acts as head of list and points to a list of any records that have been subject to a collision
use of next location after occupied one is used
this continues until empty location is found

Page 11	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2013	9691	12

9 (a) 1 mark for each correct logic gate (accept other logic gate nomenclature)

If a candidate has only one input to AND gate or an OR gate they lose the mark for that gate
(b)

A	B	C	X
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

